Advanced Segmentation Techniques Using Genetic Algorithm for Recognition of Lung Diseases from CT Scans of Thorax

نویسندگان

  • C. Bhuvaneswari
  • P. Aruna
  • D. Loganathan
چکیده

In this study, texture based segmentation and recognition of the lung diseases from the computed tomography images are presented. The texture based features are extracted by Gabor filtering, feature selection techniques such as Information Gain, Principal Component Analysis, correlation based feature selection are employed with Genetic algorithm which is used as an optimal initialisation of the clusters. The feature outputs are combined by watershed segmentation and the fuzzy C means clustering. The images are recognized with the statistical and the shape based features. The four classes of the dataset of lung diseases are considered and the training and testing are done by the Naive Bayes classifier to classify the datasets. Results of this work show an accuracy of above 90% for the correlation based feature selection method for the four classes of the

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lung field segmentation from thin-slice CT scans in presence of severe pathology

Conventional methods for the segmentation of lung fields from thorax CT scans are based on thresholding. They rely on a large grey value contrast between the lung parenchyma and surrounding tissues. In the presence of consolidations or other high density pathologies, these methods fail. For the segmentation of such scans, a lung shape should be induced without relying solely on grey level infor...

متن کامل

Extraction and 3D Segmentation of Tumors-Based Unsupervised Clustering Techniques in Medical Images

Introduction The diagnosis and separation of cancerous tumors in medical images require accuracy, experience, and time, and it has always posed itself as a major challenge to the radiologists and physicians. Materials and Methods We Received 290 medical images composed of 120 mammographic images, LJPEG format, scanned in gray-scale with 50 microns size, 110 MRI images including of T1-Wighted, T...

متن کامل

Diagnosis of COVID-19 Disease Using Lung CT-scan Image Processing Techniques

Introduction: Today, several methods are used for detecting COVID-19 such as disease-related clinical symptoms, and more accurate diagnostic methods like lung CT-scan imaging. This study aimed to achieve an accurate diagnostic method for intelligent and automatic diagnosis of COVID-19 using lung CT-scan image processing techniques and utilize the results of this method as an accurate diagnostic...

متن کامل

Detection of lung cancer using CT images based on novel PSO clustering

Lung cancer is one of the most dangerous diseases that cause a large number of deaths. Early detection and analysis can be very helpful for successful treatment. Image segmentation plays a key role in the early detection and diagnosis of lung cancer. K-means algorithm and classic PSO clustering are the most common methods for segmentation that have poor outputs. In t...

متن کامل

Classification of the Lung Diseases from CT Scans by Advanced Segmentation Techniques using Genetic Algorithm

Lung diseases are the most common disease which causes mortality worldwide .In this study, the computed tomography images are used for the diagnosis of the lung diseases such as normal, small cell lung carcinoma, large cell lung carcinoma and non small cell lung carcinoma by the effective extraction of the global features of the images and feature selection techniques. The images are recognized...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013